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Outline of My Talk

New Directions in Bayesian Shrinkage for Sparse and
Structured Data

Part I: Global-Local Shrinkage:
Overview

1. Sparse signal recovery

2. Horseshoe prior

3. Optimality properties

4. Global-local family

Part II: New Directions

1. Grouped sparsity/shrinkage

2. Precision matrix estimation

3. Future directions
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Global-Local Shrinkage: A Brief
Overview



Common Theme: High-dimensional Data

Sparsity: Needles in haystack !



High-dimensional Inference

Normal Means: (Yi | θi )
ind∼ N (θi , σ2), i = 1, . . . , n,

Regression: Y = Xθ+ ε, p � n, ε ∼ N (0, σ2I).

Sparsity: θ ∈ `0[pn] ≡ {θ : #(θi 6= 0) ≤ pn}, pn/n→ 0

Grouped covariates: y ∼ N (Cα + ∑G
g=1 X g βg , σ2I n) where

g = 1, . . . ,G indexes the groups.

Precision matrix: X(n) ∼ Np(0, Σ), Estimate Ω = Σ−1.
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Goals:

1. Recovery: provide estimator θ̂ or Ω̂.

2. Multiple Testing: Test whether each θi (or ωij ) is zero or non-zero.

3. Variable selection.

4. Prediction.

5 / 39



The Two-groups Model i

� Natural hierarchical Bayesian solution : two-groups model.

1. Assume each θi is non-zero with a prior probability π, and the
non-zero θi ’s come from a common density fA(·).

2. Use Bayes’ rule to calculate posterior probabilities that each
θi ∼ fA(·).

� Automatically adjusts for multiplicity and sparsity without any
regularization.

� Carry out tests using the posterior inclusion probabilities (PIP).

Posterior Inclusion Probability = ωi = P(θi 6= 0 | yi )

� Induce sparsity through a ‘spike and slab’ prior.
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The Two-groups Model ii

� Spike & Slab

Yi ∼ N (θi , σ2), i = 1, . . . , n

θi ∼ (1− p) δ{0}︸︷︷︸
Spike

+p

Slab︷ ︸︸ ︷
N (0, ψ2)

Multiple testing:

H0i : θi = 0 vs. HAi : θi 6= 0, i = 1, . . . , n.

� Need (latent) indicators for MCMC:

γi =

{
0 if θi = 0

1 if θi 6= 0

� γ indexes 2model dimension possible models: exploring the full
posterior is computationally expensive.
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Towards the one-group model i

� The two-groups model leads to a shrinkage rule linear in yi .

� If θi ∼ (1− p)δ{0} + pN (0, ψ2), the posterior mean is:

E(θi | yi ) = ωi
ψ2

1 + ψ2
yi = ω∗i yi (1)

where ωi is the posterior inclusion probability P(θi 6= 0 | yi ).
� If ψ2 → ∞ as the number of tests n→ ∞:

E (θi | yi ) ≈ ωiyi (linear in yi )

� The one-group model takes a different route :

� Directly models the posterior inclusion probability ωi
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The One-group model

Global-local shrinkage priors: Horseshoe [Carvalho et al., 2010]

Yi | θi ∼ N (θi , σ2); θi | λi ∼ N
(

0, λ2
i τ2
)

;

λi︸︷︷︸
local

ind∼ C+(0, 1), τ︸︷︷︸
global

∼ C+(0, σ) (Heavy-tailed prior)

Posterior mean:
E(θi | yi ) = {1−E(1/1+λ2

i τ2 | yi )}yi
.
= (1−E(κi | yi ))yi .

Two-groups Model One-group Model
E(θi | yi ) ≈ ωiyi , ωi = PIP E(θi | Yi ) = {1−E(κi | yi )}yi

1−E(κi | yi ) mimics the posterior inclusion probability ωi .

E(κi | yi ) ≈ 0 for large yi (signal), E(κi | yi ) ≈ 1 for small yi (noise) .

Why not use the two-groups model directly?
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How to Build a Sparsity Prior

� E(κi | yi ) ≈ 0 for large yi , E(κi | yi ) ≈ 1 for small yi .

κ-scale: p(κi | yi )︸ ︷︷ ︸
posterior

∝ p(yi | κi )︸ ︷︷ ︸
likelihood

p(κi )︸ ︷︷ ︸
prior

∝ κ
1
2
i exp

{
−κi

y2
i

2

}
p(κi )

� Likelihood doesn’t concentrate near 1 for yi ≈ 0.

� Horseshoe: Push density towards 1 → replace κ
1
2
i with (1− κi )

− 1
2 .

� Achieved by ‘horseshoe’: p(κi ) ∝ 1/
√

κi (1− κi ).
Likelihood Beta−prior Posterior
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Shrinkage for small y
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i ∼ C+(0, 1) ≡ κi ∼ Be( 1

2 , 1
2 ) ⇒ “Horseshoe”.
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Global-Local priors

Global-local scale mixtures[Polson and Scott, 2010b]:

(y | θ) ∼ N (Xθ, σ2I); θi ∼ N (0, λ2
i τ2)

λ2
i ∼ π(λ2

i ); (τ2) ∼ π(τ2), i = 1, . . . , n.

λi : local shrinkage - tags signal, τ: global shrinkage - adjusts to sparsity.

Global-local shrinkage priors Authors

Normal Exponential Gamma Griffin and Brown [2010]
Horseshoe Carvalho et al. [2010, 2009]

Hypergeometric Inverted Beta Polson and Scott [2010a]
Generalized Double Pareto Armagan et al. [2011]

Generalized Beta Armagan et al. [2013]
Dirichlet–Laplace Bhattacharya et al. [2015]

Horseshoe+ Bhadra et al. [2017b]
Horseshoe-like Bhadra et al. [2017a]

Spike-and-Slab Lasso Ročková and George [2016]
R2-D2 Zhang et al. [2016]

Inverse-Gamma-Gamma Bai and Ghosh [2017]

Heavy-tailed Horseshoe Womack and Yang [2019]
Log-adjusted prior Hamura et al. [2020]

Gauss–Hypergeometric Datta and Dunson [2016]
Extremely heavy-tailed (EH) prior Hamura et al. [2019] 11 / 39



Shape of G-L priors
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Need: Spike at zero and Heavy-tails
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Horseshoe > Bayesian Lasso
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(a) Shrinkage profile for Horseshoe,
Horseshoe+, and Laplace prior.
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(b) Shrinkage Profiles

Lasso overshrinks, Horseshoe doesn’t

Castillo et al. [2015]: the full Lasso posterior distribution does not
contract at the same speed as the posterior mode ⇒ Poor
uncertainty quantification.
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Theory for general G-L prior

θi ∼ N (0, λ2
i τ2), λ2

i
ind∼ π1(λ

2
i ); (τ2) ∼ π2(τ

2), i = 1, . . . , n.

� Ghosh et al. [2016]: Bayes oracle for G-L priors.

� Ghosh and Chakrabarti [2017]: Asymptotic Minimaxity for G-L
priors.

� Key idea: local shrinkage priors should have regularly varying tails.

� Up to O(1) can be relaxed: G-L priors can be exactly minimax and
ABOS [Ghosh et al., 2016, Bai and Ghosh, 2017].
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Grouped shrinkage



Exposure Correlation Structure (NHANES 2003-2004)
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Mono−n−butyl phthalate
Mono−ethyl phthalate

Mono−benzyl phthalate
Mono−n−methyl

Mono−(3−carboxypropyl) phthalate
Mono−isobutyl pthalate
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pesticides 

Brominated diphenyl 
ethers 

Polycyclic aromatic 
hydrocarbons 

Source: National Health and Nutrition Examination Survey (NHANES).
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Simple multipollutant model

� Consider a Bayesian sparse linear regression model

[y |α, β, σ2] ∼ N

(
Cα +

G

∑
g=1

X g βg , σ2I n

)
, π(α) ∝ 1, β ∼ π(β),

(2)
where g = 1, . . . ,G indexes the groups, y is an n× 1 vector of
centered continuous responses, C is a matrix of adjustment
covariates,

� and ... X g is an n× pg matrix of standardized covariates in the

g -th group, βg = (βg1, . . . , βgpg )
> is a pg × 1 vector of regression

coefficients corresponding to the g -th group,

� and ... β = (β>1 , . . . , β>G )
> is a p × 1 vector of regression

coefficients to employ shrinkage on.
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Group Inverse-Gamma Gamma (GIGG) Shrinkage

Global-Group-Local Shrinkage Priors [Xu et al., 2016]

[ygj |βgj , σ2] ∼ N(βgj , σ2), [βgj |τ2, γ2
g , λ2

gj ] ∼ N(0, τ2γ2
gλ2

gj ),

where gj indexes the j-th mean in the g -th group, λ2
g = (λ2

g1, ..., λ2
gpg ),

and pg denotes the number of observations in the g -th group.

Key Idea: Need π(γ2
g , λ2

g ) such that

γ2
gλ2

gj ∼ β′(ag , bg ), ∀j ∈ {1, ..., pg}.

Proposition: If U ∼ G (a, η) and V ∼ IG (b, η) are independent, then

UV ∼ β′(a, b).
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Group Inverse-Gamma Gamma (GIGG) Prior [Boss, Datta,
Wang, Park, Kang, and Mukherjee, 2021]

Formulation

[βgj |τ2, γ2
g , λ2

gj ] ∼ N(0, τ2γ2
gλ2

gj ), γ2
g ∼ G (ag , 1), λ2

gj ∼ IG (bg , 1)

Here, the index gj refers to the j-th mean in the g -th group.

Posterior Distribution of Shrinkage Factors

π
(
κg1, ..., κgpg |yg1, ..., ygpg , τ2, σ2, ag , bg

)
∝

(
1+

τ2

σ2

pg

∑
j=1

κgj
1− κgj

)−(ag+pgbg )( pg

∏
j=1

κ
bg−1/2
gj (1− κgj )

−(bg+1)e
−

y2
gj

2σ2 κgj

)
,

where 0 < κgj < 1 for all 1 ≤ j ≤ pg (pg is the size of the g -th group).

Reduces to usual horseshoe prior for pg = 1 (groups of size 1).
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Posterior Mean (GIGG Prior)

Illustrative Model: [yg1|βg1] ∼ N(βg1, 1), [yg2|βg2] ∼ N(βg2, 1)
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Here ag effectively controls the overall strength of the shrinkage, whereas
bg generally controls the dependence of the within-group shrinkage. 19 / 39



Theoretical Results

Posterior Concentration (Sparse Normal Means)

� |ygj | → ∞ =⇒ posterior distribution of κgj concentrates near 0.

� τ → 0 =⇒ posterior distribution of κgj concentrates near 1.

Posterior Concentration (Linear Regression with p < n)

� τ → 0 =⇒ posterior distribution of
∥∥β̂

OLS − E [β | ·]
∥∥

2

concentrates near
∥∥β̂

OLS∥∥
2

(E [β | ·] is the full conditional mean).

� For block diagonal correlation structure, bg → ∞ and τ2/σ2 small
=⇒ shrinkage of g -th group close to zero.

Posterior Consistency (Linear Regression)

� Assumes that p = o(n) and fixed values of ag and bg .
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Simulations (n = 500, p = 50)

Simulation Settings

(a) Concentrated Signal (b) Distributed Signal

In the diagram, the gj-th box is the j-th exposure in the g -th group. The
boxes corresponding to non-null regression coefficients are filled in.

Exposure Correlation Structure

� Correlations within exposure class are ρ = 0.8.

� Correlations between exposure classes are 0.2.
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Mean-Squared Error

ρ = 0.8ρ = 0.8ρ = 0.8 Concentrated Distributed
Method Null Non-Null Null Non-Null
Ordinary Least Squares 3.74 0.41 8.09 2.03
Horseshoe 0.51 0.41 0.85 2.14
GIGG (ag = 1/n, bg = 1/n) 0.11 0.30 0.03 3.59
GIGG (ag = 1/2, bg = 1/n) 0.11 0.30 0.04 3.56
GIGG (ag = 1/n, bg = 1/2) 0.29 0.39 0.03 1.57
*GIGG (ag = 1/2, bg = 1/2) 0.33 0.40 0.24 1.70
GIGG (ag = 1/n, bg = 1) 0.53 0.49 0.03 1.43
GIGG (ag = 1/2, bg = 1) 0.58 0.49 0.26 1.43
GIGG (MMLE) 0.20 0.34 0.04 1.42
Group Half Cauchy 0.30 0.39 0.08 1.64
Spike-and-Slab Lasso 0.15 0.33 0.21 4.27
BGL-SS 2.01 0.80 0.04 1.31
BSGS-SS 0.23 0.42 0.04 1.84

*GIGG (ag = 1/2, bg = 1/2) is equivalent to group horseshoe.

**Bolded entries indicate the top four performers.
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Illustrative Example from NHANES 2003-2004

Study Details

� 990 adults with 35 measured environmental contaminants.

� Outcome of interest is Gamma-Glutamyl Transferase (GGT).

Exposure Classes

� 3 Metals (cadmium, lead, and mercury)

� 7 Phthalates

� 8 Organochlorine Pesticides

� 7 Polybrominated Diphenyl Ethers (PBDEs)

� 10 Polycyclic Aromatic Hydrocarbons (PAHs)
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Illustrative Example from NHANES 2003-2004
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Precision matrix estimation



Gaussian Graphical Model i

� Gaussian graphical model (GGM) remains popular as a fundamental
building block for network estimation because of the ease of
interpretation of the resulting precision matrix estimate:

� An inferred off-diagonal zero corresponds to conditional
independence of the two corresponding nodes given the rest [see,
e.g., Lauritzen, 1996].

� There are both Bayesian and frequentist approaches to this, it is
difficult to obtain good Bayesian and frequentist properties under
the same prior–penalty dual, complicating justification.

� Our contribution is a novel prior–penalty dual that closely
approximates the popular graphical horseshoe prior and penalty, and
performs well in both Bayesian and frequentist senses.
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Gaussian Graphical Model ii

� X(n) = (X1, . . . ,Xn)T ∼ Np(0, Σ).

� The corresponding precision matrix: Ω = ((ωij )) is defined as

Ω = Σ−1.

� Assume that Ω is sparse, in the sense that the number of non-zero
off-diagonal elements is small.

� Goal: fully Bayesian inference on Ω, we need a suitable
sparsity-favoring prior that also results in a penalty function with
good frequentist properties.
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Horseshoe Regularization 1

� Horseshoe prior: p(ω) not analytically tractable !

1

τ(2π)3/2
log

(
1 +

4τ2

ω2

)
< pHS (ω | τ) <

2

τ(2π)3/2
log

(
1 +

2τ2

ω2

)
,

� Hindrance in learning via EM-type algorithms.

� Solution: normalize the tight bounds: ‘horseshoe-like’ [Bhadra et al.,
2017a].

p
H̃S

(ω | a) = 1

2πa1/2
log
(

1 +
a

ω2

)
.

� Extend this for precision matrix estimation (Sagar, Banerjee, D., &
Bhadra, 2021).

1https://arxiv.org/abs/2104.10750
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Normal Scale Mixture Representation!

� Frullani’s identity [Jeffreys and Swirles, 1972, pp. 406–407]:∫ ∞

0

f (ax)− f (bx)

x
dx = {f (0)− f (∞)} log(b/a),

� f (x) = exp(−x) yields a latent variable representation:

1

2πa1/2
log
(

1 +
a

ω2

)
=
∫ ∞

0
exp

(
−uω2

a

)
(1− e−u)

2πa1/2u
du

� Normal scale mixture:

(ω | u, a)
ind∼ N

(
0,

a

2u

)
, p(u) =

1− e−u

2π1/2u3/2

� Reparametrize (t2 = 2u and τ2 = a):

(ω | i , τ) ∼ N
(

0,
τ2

t2

)
, p(t) =

(1− e−
1
2 t

2
)√

2πt2

� This p(t) is the standard Slash-Normal density that can be written
as a Normal variance mixture with a Pareto( 1

2 ) mixing density.
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Details

� For the fully Bayesian model, the element-wise prior specification
induced by the horseshoe-like prior is,

ωij | a ∼ π(ωij | a), 1 ≤ i < j ≤ p; ωii ∝ 1, 1 ≤ i ≤ p,

where π(ωij | a) is the density of the horseshoe-like prior.

� The horseshoe-like prior above can be expressed as a Gaussian
scale-mixture [Bhadra et al., 2017a], thus giving us a global-local
shrinkage prior:

ωij | νij , a ∼ N
(

0,
a

2νij

)
, π(νij ) ∼

1− exp(−νij )

2π1/2ν3/2
ij

. (3)

� Only νij is considered to be latent and the global scale parameter a
is considered to be fixed.

� Can estimate a by the effective model size approach of Piironen
et al. [2017] to avoid it collapsing to zero.
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Details

� We restrict the prior on a subspace of symmetric positive definite
matrices, M+

p (L), where

M+
p (L) = {Ω ∈ M+

p : 0 < L−1 ≤ eig1(Ω) ≤ · · · ≤ eigp(Ω) ≤ L < ∞}.
(4)

� Only necessary for arriving at the theoretical results involving the
posterior convergence rate of Ω. We assume that L is a fixed
constant, which can be large.

� However, this condition does not affect the practical implementation
of our proposed method, and is used purely as a technical
requirement.

� Beyond this, no structural assumption (e.g., decomposability) is
placed on either Ω or Σ.
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Joint prior

� Combining the unrestricted prior as in (3) and (3), along with the
prior space restriction as in (4), the joint prior distribution on Ω is
given by,

π(Ω | ν, a)π(ν) ∝ ∏
i ,j :i<j

(1− exp(−νij )) ν−1
ij exp

(
−νijω

2
ij

a

)
1lM+

p (L)
(Ω).

(5)

� With the prior specification as in (5), the log-posterior L thus
becomes,

L ∝
n

2
log |Ω|− n

2
tr(SΩ)+ ∑

i ,j :i<j

{
log (1− exp(−νij ))− log νij −

νijω
2
ij

a

}
.

(6)
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Estimation

� Utilize the Gaussian mixture representation to devise an Expectation
Conditional Maximization (ECM) [Meng and Rubin, 1993] approach
to MAP estimation.

� For updating the elements of the precision matrix, we use the
coordinate descent technique proposed by Wang [2014].

� E Step: Following Bhadra et al. [2017a], we calculate the
conditional expectation of the latent variable νij , 1 ≤ i < j ≤ p, at
current iteration (t) as follows:

E(νij | ω
(t)
ij , a) =

log(1 +
a

(ω
(t)
ij )2

)


−1

a2

((ω
(t)
ij )2 + a)((ω

(t)
ij )2)

.

(7)

� CM Steps: Having updated the latent parameters in the E-Step,
the coordinate descent approach of Wang [2014] is used to update
one column of the precision matrix at a time.
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Posterior sampling

� Posterior sampling strategy combines ideas from [Bhadra et al.,
2017a] and [Li et al., 2017].

� With substitutions 2νij 7→ t2
ij and a 7→ τ2, the prior can be written

as:

ωij | νij , τ ∼ N
(

0, τ2/t2
ij

)
, π(tij ) =

1− exp
(
−t2

ij/2
)

(2π)1/2t2
ij

, tij ∈ R, τ2 > 0,

where π(tij ) above is known as the the slash normal density,

expressed as (φ(0)− φ(tij ))/t2
ij [Bhadra et al., 2017a].

� Introducing a further local latent variable rij , the density for tij can
also be written as a normal scale mixture, where the scale follows a
Pareto distribution, that is,

tij | rij ∼ N (0, rij ), rij ∼ Pareto (1/2) .

� Remaining steps are similar to the graphical horseshoe sampler of Li
et al. [2017].
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Posterior consistency

� Posterior contraction rate of the precision matrix Ω around the true
precision matrix Ω0 with respect to the Frobenius norm under the
graphical horseshoe-like prior.

� We make certain assumptions on the true precision matrix, the
dimension and sparsity, and the prior space.

� Assumptions: True underlying graph is sparse, effective dimension
of the parameter Ω0, p + s satisfies (p + s) log p/n = o(1), the
prior space contains the true precision matrix, and the prior puts
sufficient mass around the true zero elements in the precision matrix.

Theorem
The posterior distribution of Ω satisfies

E0

[
P{‖Ω−Ω0‖2 > Mεn | X(n)}

]
→ 0,

for εn = n−1/2(p + s)1/2(log p)1/2 and a sufficiently large constant
M > 0.
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MAP estimator

� We can prove that the extended real-valued penalty function
pena(x) = − log log(1 + a/x2), a > 0, is strongly concave, and
hence strictly concave, for all x ∈ dom(pena), separately for x > 0
and x < 0.

� Strict concavity of penalty function guarantees that the LLA
algorithm will satisfy an ascent property, that is,
Q(Ω(t+1)) > Q(Ω(t)).

Theorem

Under the conditions of Theorem 1, the MAP estimator of Ω, given by

Ω̂
MAP

is consistent, in the sense that

‖Ω̂MAP −Ω0‖2 = OP (εn),

where εn is the posterior convergence rate as defined in Theorem 1.

� Converges to the true precision matrix Ω0 at the same rate as the
posterior convergence rate in the Frobenius norm.
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Simulation: selected

Hubs. The rows/columns are partitioned into K disjoint groups
G1, . . . ,GK . The off-diagonal entries ω0

ij are set to 0.25 if i 6= j and
i , j ∈ Gk for k = 1, . . . ,K . In our simulations we consider p/10 groups
with equal number of elements in each group.

Table 1: 50 data sets generated with precision matrix Ω0, where n = 120 and

p = 100. Candidates: frequentist graphical lasso with penalized diagonal elements

(GL1) and with unpenalized diagonal elements (GL2), graphical SCAD (GSCAD),

Bayesian graphical lasso (BGL), the graphical horseshoe (GHS), graphical

horseshoe-like ECM (ECM) and graphical horseshoe-like MCMC (MCMC).

Hubs
90 nonzero pairs out of 4950

nonzero elements = 0.25
GL1 GL2 GSCAD BGL GHS ECM MCMC

Stein’s loss 5.255 6.328 5.213 43.042 5.101 4.22 5.310
(0.263) (0.414) (0.261) (0.802) (0.455) (0.369) (0.485)

F norm 3.018 3.432 3.003 4.295 2.544 2.415 2.687
(0.091) (0.112) (0.093) (0.156) (0.126) (0.103) (0.141)

TPR .995 .986 .998 .995 .872 0.985 0.754
(.007) (.017) (.002) (.008) (.04) (.014) (0.004)

FPR .101 .045 .983 .186 .003 .062 0.003
(.016) (.008) (.012) (.007) (.001) (0.005) (0.001)

MCC 0.373 0.523 0.016 0.27 0.85 0.458 0.775
(.027) (.039) (.006) (.006) (.027) (.015) (.033)

Avg CPU time 1.739 1.76 48.54 549.196 252.94 5.811 537.604
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Summary and Scopes (Part I)

� Global-local priors: state-of-the-art Bayesian tool for sparse signal
recovery.

� Can be extended to sparse + structured covariates: GIGG and
graphical-horseshoe.

� Scale mixture: allows for MCMC + EM and LLA algorithms.

� Can be interpreted as non-convex penalty (horseshoe-like)

� Scopes:

1. Selection for bi-level sparsity (still Oracle?)
2. Multiple graphical models.
3. Extend beyond Gaussian set-up (e.g. [Datta and Dunson, 2016]).
4. An appealing new direction is Bayesian neural net, e.g. [Ghosh and

Doshi-Velez, 2017] [‘Model selection in Bayesian neural networks via
horseshoe priors’]
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Thank you!

39 / 39



Resources for Horseshoe Prior



Learning τ

1. Maximum marginal likelihood estimator (MMLE)

2. Full Bayes estimator: half-Cauchy prior truncated to the interval
[1/n, 1].

3. Cross-validation.

4. By studying the prior for meff = ∑n
i=1(1− κi ) [Piironen and Vehtari,

2016]

� MMLE beats simple thresholding:

τ̂s(c1, c2) = max

{
∑n

i=1 1{|yi | ≥
√

c1 log(n)}
c2n

,
1

n

}
.

� Empirical Bayes estimate of τ can replace a full Bayes estimate of τ.

� Caution to prevent the estimator from getting too close to zero.



Computation for Horseshoe

1. MCMC : block-updating θ, λ and τ using either a Gibbs or
parameter expansion or slice sampling strategy.

2. Makalic and Schmidt [2016]: Inverse-gamma scale mixture for Gibbs
sampling scheme for horseshoe and horseshoe+ prior for linear
regression and logistic and negative binomial regression.

3. Hahn et al. [2016]: Elliptical slice sampler – wins over Gibbs
strategies!

4. Bhattacharya et al. [2016]: Gaussian sampling alternative to the
näıve Cholesky decomposition to reduce the computational burden
from O(p3) to O(n2p).



Implementation

Table 2: Implementations of Horseshoe and Other Shrinkage Priors

Implementation (Package/URL) Authors

R package: monomvn Gramacy and Pantaleo [2010]
R code in paper Scott [2010]

R package: horseshoe van der Pas et al. [2016]
R package: fastHorseshoe Hahn et al. [2016]

Matlab code Bhattacharya et al. [2016]
GPU accelerated Gibbs sampling Terenin et al. [2016]

bayesreg + Matlab code in paper Makalic and Schmidt [2016]
Matlab code Johndrow and Orenstein [2017]

https://cran.r-project.org/web/packages/monomvn/index.html
https://cran.r-project.org/web/packages/horseshoe/index.html
https://cran.r-project.org/web/packages/fastHorseshoe/index.html
https://github.com/antik015/Fast-Sampling-of-Gaussian-Posteriors
https://cran.r-project.org/web/packages/bayesreg/index.html
https://github.com/jamesjohndrow/horseshoe_jo
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