New Directions in Bayesian Shrinkage for Sparse and Structured Data

Jyotishka Datta

September 14, 2021
Virginia Tech

Outline of My Talk

New Directions in Bayesian Shrinkage for Sparse and Structured Data

Part I: Global-Local Shrinkage: Overview

1. Sparse signal recovery
2. Horseshoe prior
3. Optimality properties
4. Global-local family

Part II: New Directions

1. Grouped sparsity/shrinkage
2. Precision matrix estimation
3. Future directions

Global-Local Shrinkage: A Brief Overview

Common Theme: High-dimensional Data

Sparsity: Needles in haystack!

High-dimensional Inference

Normal Means: $\left(Y_{i} \mid \theta_{i}\right) \stackrel{\text { ind }}{\sim} \mathcal{N}\left(\theta_{i}, \sigma^{2}\right), i=1, \ldots, n$,
Regression: $\mathbf{Y}=\mathbf{X} \boldsymbol{\theta}+\boldsymbol{\epsilon}, p \gg n, \boldsymbol{\epsilon} \sim \mathcal{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$.
Sparsity: $\theta \in \ell_{0}\left[p_{n}\right] \equiv\left\{\theta: \#\left(\theta_{i} \neq 0\right) \leq p_{n}\right\}, p_{n} / n \rightarrow 0$

Theoretical Model
Fitted Model
$y=\beta_{0}+\beta_{1} X_{1}+\cdots \beta_{p} X_{p}+\epsilon$
$\hat{y}=\hat{\beta}_{0}+\hat{\beta}_{1} X_{1}+\cdots \hat{\beta}_{p} X_{p}$

High-dimensional Inference

Normal Means: $\left(Y_{i} \mid \theta_{i}\right) \stackrel{\text { ind }}{\sim} \mathcal{N}\left(\theta_{i}, \sigma^{2}\right), i=1, \ldots, n$,
Regression: $\mathbf{Y}=\mathbf{X} \boldsymbol{\theta}+\boldsymbol{\epsilon}, p \gg n, \boldsymbol{\epsilon} \sim \mathcal{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$.
Sparsity: $\theta \in \ell_{0}\left[p_{n}\right] \equiv\left\{\theta: \#\left(\theta_{i} \neq 0\right) \leq p_{n}\right\}, p_{n} / n \rightarrow 0$

$$
\begin{array}{cc}
\text { Theoretical Model } & \text { Fitted Model } \\
y=\beta_{0}+\beta_{1} X_{1}+\cdots \beta_{p} X_{p}+\epsilon & \hat{y}=\hat{\beta}_{0}+\hat{\beta}_{1} X_{1}+\cdots \hat{\beta}_{p} X_{p}
\end{array}
$$

Grouped covariates: $\mathbf{y} \sim \mathcal{N}\left(\boldsymbol{C} \alpha+\sum_{g=1}^{G} \boldsymbol{X}_{g} \boldsymbol{\beta}_{g}, \sigma^{2} \boldsymbol{I}_{n}\right)$ where $g=1, \ldots, G$ indexes the groups.
Precision matrix: $\mathbf{X}^{(n)} \sim \mathcal{N}_{p}(\mathbf{0}, \boldsymbol{\Sigma})$, Estimate $\boldsymbol{\Omega}=\boldsymbol{\Sigma}^{-1}$.

Goals:

1. Recovery: provide estimator $\hat{\boldsymbol{\theta}}$ or $\hat{\boldsymbol{\Omega}}$.
2. Multiple Testing: Test whether each $\theta_{i}\left(\right.$ or $\left.\omega_{i j}\right)$ is zero or non-zero.
3. Variable selection.
4. Prediction.

The Two-groups Model i

- Natural hierarchical Bayesian solution: two-groups model.

1. Assume each θ_{i} is non-zero with a prior probability π, and the non-zero θ_{i} 's come from a common density $f_{A}(\cdot)$.
2. Use Bayes' rule to calculate posterior probabilities that each $\theta_{i} \sim f_{A}(\cdot)$.

- Automatically adjusts for multiplicity and sparsity without any regularization.
- Carry out tests using the posterior inclusion probabilities (PIP).

$$
\text { Posterior Inclusion Probability }=\omega_{i}=P\left(\theta_{i} \neq 0 \mid y_{i}\right)
$$

- Induce sparsity through a 'spike and slab' prior.

The Two-groups Model ii

- Spike \& Slab

$$
\begin{aligned}
& Y_{i} \sim \mathcal{N}\left(\theta_{i}, \sigma^{2}\right), i=1, \ldots, n \\
& \theta_{i} \sim(1-p) \underbrace{\delta_{\{0\}}}_{\text {Spike }}+p \overbrace{\mathcal{N}\left(0, \psi^{2}\right)}^{\text {Slab }}
\end{aligned}
$$

Multiple testing:

$$
H_{0 i}: \theta_{i}=0 \text { vs. } H_{A i}: \theta_{i} \neq 0, i=1, \ldots, n .
$$

- Need (latent) indicators for MCMC:

$$
\gamma_{i}= \begin{cases}0 & \text { if } \theta_{i}=0 \\ 1 & \text { if } \theta_{i} \neq 0\end{cases}
$$

- γ indexes $2^{\text {model dimension }}$ possible models: exploring the full posterior is computationally expensive.

Towards the one-group model \mathbf{i}

- The two-groups model leads to a shrinkage rule linear in y_{i}.
- If $\theta_{i} \sim(1-p) \delta_{\{0\}}+p \mathcal{N}\left(0, \psi^{2}\right)$, the posterior mean is:

$$
\begin{equation*}
\mathbb{E}\left(\theta_{i} \mid y_{i}\right)=\omega_{i} \frac{\psi^{2}}{1+\psi^{2}} y_{i}=\omega_{i}^{*} y_{i} \tag{1}
\end{equation*}
$$

where ω_{i} is the posterior inclusion probability $P\left(\theta_{i} \neq 0 \mid y_{i}\right)$.

- If $\psi^{2} \rightarrow \infty$ as the number of tests $n \rightarrow \infty$:

$$
\left.E\left(\theta_{i} \mid y_{i}\right) \approx \omega_{i} y_{i} \text { (linear in } y_{i}\right)
$$

- The one-group model takes a different route:
- Directly models the posterior inclusion probability ω_{i}

The One-group model

Global-local shrinkage priors: Horseshoe [Carvalho et al., 2010]

$$
\begin{aligned}
& Y_{i} \mid \theta_{i} \sim \mathcal{N}\left(\theta_{i}, \sigma^{2}\right) ; \quad \theta_{i} \mid \lambda_{i} \sim \mathcal{N}\left(0, \lambda_{i}^{2} \tau^{2}\right) \\
& \underbrace{\lambda_{i}}_{\text {local }} \stackrel{\text { ind }}{\sim} \mathcal{C}^{+}(0,1), \underbrace{\tau}_{\text {global }} \sim \mathcal{C}^{+}(0, \sigma) \quad \text { (Heavy-tailed prior) }
\end{aligned}
$$

Posterior mean:
$\mathbb{E}\left(\theta_{i} \mid y_{i}\right)=\left\{1-\mathbb{E}\left(1 / 1+\lambda_{i}^{2} \tau^{2} \mid y_{i}\right)\right\} y_{i} \doteq\left(1-\mathbb{E}\left(\kappa_{i} \mid y_{i}\right)\right) y_{i}$.

The One-group model

Global-local shrinkage priors: Horseshoe [Carvalho et al., 2010]

$$
\begin{aligned}
Y_{i} \mid \theta_{i} & \sim \mathcal{N}\left(\theta_{i}, \sigma^{2}\right) ; \quad \theta_{i} \mid \lambda_{i} \sim \mathcal{N}\left(0, \lambda_{i}^{2} \tau^{2}\right) \\
\underbrace{\lambda_{i}}_{\text {local }} & \stackrel{\text { ind }}{\sim} \mathcal{C}^{+}(0,1), \underbrace{\tau}_{\text {global }} \sim \mathcal{C}^{+}(0, \sigma) \text { (Heavy-tailed prior) }
\end{aligned}
$$

Posterior mean:
$\mathbb{E}\left(\theta_{i} \mid y_{i}\right)=\left\{1-\mathbb{E}\left(1 / 1+\lambda_{i}^{2} \tau^{2} \mid y_{i}\right)\right\} y_{i} \doteq\left(1-\mathbb{E}\left(\kappa_{i} \mid y_{i}\right)\right) y_{i}$.

Two-groups Model	One-group Model
$\mathbb{E}\left(\theta_{i} \mid y_{i}\right) \approx \omega_{i} y_{i}, \omega_{i}=\mathrm{PIP}$	$\mathbb{E}\left(\theta_{i} \mid Y_{i}\right)=\left\{1-\mathbb{E}\left(\kappa_{i} \mid y_{i}\right)\right\} y_{i}$

$1-\mathbb{E}\left(\kappa_{i} \mid y_{i}\right)$ mimics the posterior inclusion probability ω_{i}.
$\mathbb{E}\left(\kappa_{i} \mid y_{i}\right) \approx 0$ for large $y_{i}($ signal $), \mathbb{E}\left(\kappa_{i} \mid y_{i}\right) \approx 1$ for small y_{i} (noise)

How to Build a Sparsity Prior

- $\mathbb{E}\left(\kappa_{i} \mid y_{i}\right) \approx 0$ for large $y_{i}, \mathbb{E}\left(\kappa_{i} \mid y_{i}\right) \approx 1$ for small y_{i}.

$$
\kappa \text {-scale: } \underbrace{p\left(\kappa_{i} \mid y_{i}\right)}_{\text {posterior }} \propto \underbrace{p\left(y_{i} \mid \kappa_{i}\right)}_{\text {likelihood }} \underbrace{p\left(\kappa_{i}\right)}_{\text {prior }} \propto \kappa_{i}^{\frac{1}{2}} \exp \left\{-\kappa_{i} \frac{y_{i}^{2}}{2}\right\} p\left(\kappa_{i}\right)
$$

- Likelihood doesn't concentrate near 1 for $y_{i} \approx 0$.
- Horseshoe: Push density towards $1 \rightarrow$ replace $\kappa_{i}^{\frac{1}{2}}$ with $\left(1-\kappa_{i}\right)^{-\frac{1}{2}}$.
- Achieved by 'horseshoe': $p\left(\kappa_{i}\right) \propto 1 / \sqrt{\kappa_{i}\left(1-\kappa_{i}\right)}$.

$$
\lambda_{i}^{2} \sim C^{+}(0,1) \equiv \kappa_{i} \sim \operatorname{Be}\left(\frac{1}{2}, \frac{1}{2}\right) \Rightarrow \text { "Horseshoe" }
$$

Global-Local priors

Global-local scale mixtures[Polson and Scott, 2010b]:

$$
\begin{gathered}
(\mathbf{y} \mid \boldsymbol{\theta}) \sim \mathcal{N}\left(\mathbf{X} \boldsymbol{\theta}, \sigma^{2} \mathbf{I}\right) ; \theta_{i} \sim \mathcal{N}\left(0, \lambda_{i}^{2} \tau^{2}\right) \\
\lambda_{i}^{2} \sim \pi\left(\lambda_{i}^{2}\right) ;\left(\tau^{2}\right) \sim \pi\left(\tau^{2}\right), i=1, \ldots, n
\end{gathered}
$$

λ_{i} : local shrinkage - tags signal, τ : global shrinkage - adjusts to sparsity.

Global-local shrinkage priors	Authors
Normal Exponential Gamma	Griffin and Brown [2010]
Horseshoe	Carvalho et al. [2010, 2009]
Hypergeometric Inverted Beta	Polson and Scott [2010a]
Generalized Double Pareto	Armagan et al. [2011]
Generalized Beta	Armagan et al. [2013]
Dirichlet-Laplace	Bhattacharya et al. [2015]
Horseshoe+	Bhadra et al. [2017b]
Horseshoe-like	Bhadra et al. [2017a]
Spike-and-Slab Lasso	Ročková and George [2016]
R2-D2	Zhang et al. [2016]
Inverse-Gamma-Gamma	Bai and Ghosh [2017]
Heavy-tailed Horseshoe	Womack and Yang [2019]
Log-adjusted prior	Hamura et al. [2020]
Gauss-Hypergeometric	Datta and Dunson [2016]
Extremely heavy-tailed (EH) prior	Hamura et al. [2019]

Shape of G-L priors

Horseshoe > Bayesian Lasso

(a) Shrinkage profile for Horseshoe, Horseshoe+, and Laplace prior.

(b) Shrinkage Profiles

Lasso overshrinks, Horseshoe doesn't
Castillo et al. [2015]: the full Lasso posterior distribution does not contract at the same speed as the posterior mode \Rightarrow Poor uncertainty quantification.

Theory for general G-L prior

$$
\theta_{i} \sim \mathcal{N}\left(0, \lambda_{i}^{2} \tau^{2}\right), \lambda_{i}^{2} \stackrel{\text { ind }}{\sim} \pi_{1}\left(\lambda_{i}^{2}\right) ;\left(\tau^{2}\right) \sim \pi_{2}\left(\tau^{2}\right), i=1, \ldots, n .
$$

- Ghosh et al. [2016]: Bayes oracle for G-L priors.
- Ghosh and Chakrabarti [2017]: Asymptotic Minimaxity for G-L priors.
- Key idea: local shrinkage priors should have regularly varying tails.
- Up to $O(1)$ can be relaxed: G-L priors can be exactly minimax and ABOS [Ghosh et al., 2016, Bai and Ghosh, 2017].

Grouped shrinkage

Exposure Correlation Structure (NHANES 2003-2004)

Source: National Health and Nutrition Examination Survey (NHANES).

Simple multipollutant model

- Consider a Bayesian sparse linear regression model

$$
\begin{equation*}
\left[\boldsymbol{y} \mid \boldsymbol{\alpha}, \boldsymbol{\beta}, \sigma^{2}\right] \sim N\left(\boldsymbol{C} \alpha+\sum_{g=1}^{G} \boldsymbol{X}_{g} \boldsymbol{\beta}_{g}, \sigma^{2} \boldsymbol{I}_{n}\right), \quad \pi(\boldsymbol{\alpha}) \propto 1, \quad \boldsymbol{\beta} \sim \pi(\boldsymbol{\beta}) \tag{2}
\end{equation*}
$$

where $g=1, \ldots, G$ indexes the groups, \boldsymbol{y} is an $n \times 1$ vector of centered continuous responses, \boldsymbol{C} is a matrix of adjustment covariates,

- and $\ldots \boldsymbol{X}_{g}$ is an $n \times p_{g}$ matrix of standardized covariates in the g-th group, $\beta_{g}=\left(\beta_{g 1}, \ldots, \beta_{g p_{g}}\right)^{\top}$ is a $p_{g} \times 1$ vector of regression coefficients corresponding to the g-th group,
- and $\ldots \boldsymbol{\beta}=\left(\boldsymbol{\beta}_{1}^{\top}, \ldots, \boldsymbol{\beta}_{G}^{\top}\right)^{\top}$ is a $p \times 1$ vector of regression coefficients to employ shrinkage on.

Group Inverse-Gamma Gamma (GIGG) Shrinkage

Global-Group-Local Shrinkage Priors [Xu et al., 2016]

$$
\left[y_{g j} \mid \beta_{g j}, \sigma^{2}\right] \sim N\left(\beta_{g j}, \sigma^{2}\right), \quad\left[\beta_{g j} \mid \tau^{2}, \gamma_{g}^{2}, \lambda_{g j}^{2}\right] \sim N\left(0, \tau^{2} \gamma_{g}^{2} \lambda_{g j}^{2}\right),
$$

where $g j$ indexes the j-th mean in the g-th group, $\lambda_{g}^{2}=\left(\lambda_{g 1}^{2}, \ldots, \lambda_{g p_{g}}^{2}\right)$, and p_{g} denotes the number of observations in the g-th group.

Key Idea: Need $\pi\left(\gamma_{g}^{2}, \lambda_{g}^{2}\right)$ such that

$$
\gamma_{g}^{2} \lambda_{g j}^{2} \sim \beta^{\prime}\left(a_{g}, b_{g}\right), \quad \forall j \in\left\{1, \ldots, p_{g}\right\} .
$$

Group Inverse-Gamma Gamma (GIGG) Shrinkage

Global-Group-Local Shrinkage Priors [Xu et al., 2016]

$$
\left[y_{g j} \mid \beta_{g j}, \sigma^{2}\right] \sim N\left(\beta_{g j}, \sigma^{2}\right), \quad\left[\beta_{g j} \mid \tau^{2}, \gamma_{g}^{2}, \lambda_{g j}^{2}\right] \sim N\left(0, \tau^{2} \gamma_{g}^{2} \lambda_{g j}^{2}\right),
$$

where $g j$ indexes the j-th mean in the g-th group, $\lambda_{g}^{2}=\left(\lambda_{g 1}^{2}, \ldots, \lambda_{g p_{g}}^{2}\right)$, and p_{g} denotes the number of observations in the g-th group.

Key Idea: Need $\pi\left(\gamma_{g}^{2}, \lambda_{g}^{2}\right)$ such that

$$
\gamma_{g}^{2} \lambda_{g j}^{2} \sim \beta^{\prime}\left(a_{g}, b_{g}\right), \quad \forall j \in\left\{1, \ldots, p_{g}\right\} .
$$

Proposition: If $U \sim G(a, \eta)$ and $V \sim I G(b, \eta)$ are independent, then

$$
U V \sim \beta^{\prime}(a, b) .
$$

Group Inverse-Gamma Gamma (GIGG) Prior [Boss, Datta, Wang, Park, Kang, and Mukherjee, 2021]

Formulation

$$
\left[\beta_{g j} \mid \tau^{2}, \gamma_{g}^{2}, \lambda_{g j}^{2}\right] \sim N\left(0, \tau^{2} \gamma_{g}^{2} \lambda_{g j}^{2}\right), \quad \gamma_{g}^{2} \sim G\left(a_{g}, 1\right), \quad \lambda_{g j}^{2} \sim I G\left(b_{g}, 1\right)
$$

Here, the index $g j$ refers to the j-th mean in the g-th group.
Posterior Distribution of Shrinkage Factors

$$
\begin{gathered}
\pi\left(\kappa_{g 1}, \ldots, \kappa_{g p_{g}} \mid y_{g 1}, \ldots, y_{g p_{g}}, \tau^{2}, \sigma^{2}, a_{g}, b_{g}\right) \propto \\
\left(1+\frac{\tau^{2}}{\sigma^{2}} \sum_{j=1}^{p_{g}} \frac{\kappa_{g j}}{1-\kappa_{g j}}\right)^{-\left(a_{g}+p_{g} b_{g}\right)}\left(\prod_{j=1}^{p_{g}} \kappa_{g j}^{b_{g}-1 / 2}\left(1-\kappa_{g j}\right)^{-\left(b_{g}+1\right)} e^{-\frac{y_{g j}^{2}}{2 \sigma^{2}} \kappa_{g j}}\right),
\end{gathered}
$$

where $0<\kappa_{g j}<1$ for all $1 \leq j \leq p_{g}$ (p_{g} is the size of the g-th group).
Reduces to usual horseshoe prior for $p_{g}=1$ (groups of size 1).

Posterior Mean (GIGG Prior)

Illustrative Model: $\left[y_{g 1} \mid \beta_{g 1}\right] \sim N\left(\beta_{g 1}, 1\right), \quad\left[y_{g 2} \mid \beta_{g 2}\right] \sim N\left(\beta_{g 2}, 1\right)$

Here a_{g} effectively controls the overall strength of the shrinkage, whereas b_{g} generally controls the dependence of the within-group shrinkage.

Theoretical Results

Posterior Concentration (Sparse Normal Means)

- $\left|y_{g j}\right| \rightarrow \infty \Longrightarrow$ posterior distribution of $\kappa_{g j}$ concentrates near 0 .
- $\tau \rightarrow 0 \Longrightarrow$ posterior distribution of $\kappa_{g j}$ concentrates near 1 .

Posterior Concentration (Linear Regression with $p<n$)

- $\tau \rightarrow 0 \Longrightarrow$ posterior distribution of $\left\|\hat{\boldsymbol{\beta}}^{O L S}-E[\boldsymbol{\beta} \mid \cdot]\right\|_{2}$ concentrates near $\left\|\hat{\boldsymbol{\beta}}^{O L S}\right\|_{2}(E[\boldsymbol{\beta} \mid \cdot]$ is the full conditional mean).
- For block diagonal correlation structure, $b_{g} \rightarrow \infty$ and τ^{2} / σ^{2} small \Longrightarrow shrinkage of g-th group close to zero.

Posterior Consistency (Linear Regression)

- Assumes that $p=o(n)$ and fixed values of a_{g} and b_{g}.

Simulations ($n=500, p=50$)

Simulation Settings

(a) Concentrated Signal

(b) Distributed Signal

In the diagram, the $g j$-th box is the j-th exposure in the g-th group. The boxes corresponding to non-null regression coefficients are filled in.

Exposure Correlation Structure

- Correlations within exposure class are $\rho=0.8$.
- Correlations between exposure classes are 0.2.

Mean-Squared Error

$\rho=\mathbf{0 . 8}$	Concentrated		Distributed	
Method	Null	Non-Null	Null	Non-Null
Ordinary Least Squares	3.74	0.41	8.09	2.03
Horseshoe	0.51	0.41	0.85	2.14
GIGG $\left(a_{g}=1 / n, b_{g}=1 / n\right)$	$\mathbf{0 . 1 1}$	$\mathbf{0 . 3 0}$	0.03	3.59
GIGG $\left(a_{g}=1 / 2, b_{g}=1 / n\right)$	$\mathbf{0 . 1 1}$	$\mathbf{0 . 3 0}$	0.04	3.56
GIGG $\left(a_{g}=1 / n, b_{g}=1 / 2\right)$	0.29	0.39	$\mathbf{0 . 0 3}$	$\mathbf{1 . 5 7}$
*GIGG $\left(a_{g}=1 / 2, b_{g}=1 / 2\right)$	0.33	0.40	0.24	1.70
GIGG $\left(a_{g}=1 / n, b_{g}=1\right)$	0.53	0.49	$\mathbf{0 . 0 3}$	$\mathbf{1 . 4 3}$
GIGG $\left(a_{g}=1 / 2, b_{g}=1\right)$	0.58	0.49	0.26	1.43
GIGG (MMLE)	$\mathbf{0 . 2 0}$	$\mathbf{0 . 3 4}$	$\mathbf{0 . 0 4}$	$\mathbf{1 . 4 2}$
Group Half Cauchy	0.30	0.39	0.08	1.64
Spike-and-Slab Lasso	$\mathbf{0 . 1 5}$	$\mathbf{0 . 3 3}$	0.21	4.27
BGL-SS	2.01	0.80	$\mathbf{0 . 0 4}$	$\mathbf{1 . 3 1}$
BSGS-SS	0.23	0.42	0.04	1.84

*GIGG $\left(a_{g}=1 / 2, b_{g}=1 / 2\right)$ is equivalent to group horseshoe.
**Bolded entries indicate the top four performers.

Illustrative Example from NHANES 2003-2004

Study Details

- 990 adults with 35 measured environmental contaminants.
- Outcome of interest is Gamma-Glutamyl Transferase (GGT).

Exposure Classes

- 3 Metals (cadmium, lead, and mercury)
- 7 Phthalates
- 8 Organochlorine Pesticides
- 7 Polybrominated Diphenyl Ethers (PBDEs)
- 10 Polycyclic Aromatic Hydrocarbons (PAHs)

Illustrative Example from NHANES 2003-2004

Precision matrix estimation

Gaussian Graphical Model i

- Gaussian graphical model (GGM) remains popular as a fundamental building block for network estimation because of the ease of interpretation of the resulting precision matrix estimate:
- An inferred off-diagonal zero corresponds to conditional independence of the two corresponding nodes given the rest [see, e.g., Lauritzen, 1996].
- There are both Bayesian and frequentist approaches to this, it is difficult to obtain good Bayesian and frequentist properties under the same prior-penalty dual, complicating justification.
- Our contribution is a novel prior-penalty dual that closely approximates the popular graphical horseshoe prior and penalty, and performs well in both Bayesian and frequentist senses.

Gaussian Graphical Model ii

- $\mathbf{X}^{(n)}=\left(\mathbf{X}_{1}, \ldots, \mathbf{X}_{n}\right)^{T} \sim \mathcal{N}_{p}(\mathbf{0}, \boldsymbol{\Sigma})$.
- The corresponding precision matrix: $\boldsymbol{\Omega}=\left(\left(\omega_{i j}\right)\right)$ is defined as $\Omega=\boldsymbol{\Sigma}^{-1}$.
- Assume that $\boldsymbol{\Omega}$ is sparse, in the sense that the number of non-zero off-diagonal elements is small.
- Goal: fully Bayesian inference on $\boldsymbol{\Omega}$, we need a suitable sparsity-favoring prior that also results in a penalty function with good frequentist properties.

Horseshoe Regularization ${ }^{1}$

- Horseshoe prior: $p(\omega)$ not analytically tractable !

$$
\frac{1}{\tau(2 \pi)^{3 / 2}} \log \left(1+\frac{4 \tau^{2}}{\omega^{2}}\right)<p_{H S}(\omega \mid \tau)<\frac{2}{\tau(2 \pi)^{3 / 2}} \log \left(1+\frac{2 \tau^{2}}{\omega^{2}}\right)
$$

- Hindrance in learning via EM-type algorithms.

Horseshoe Regularization ${ }^{1}$

- Horseshoe prior: $p(\omega)$ not analytically tractable !

$$
\frac{1}{\tau(2 \pi)^{3 / 2}} \log \left(1+\frac{4 \tau^{2}}{\omega^{2}}\right)<p_{H S}(\omega \mid \tau)<\frac{2}{\tau(2 \pi)^{3 / 2}} \log \left(1+\frac{2 \tau^{2}}{\omega^{2}}\right)
$$

- Hindrance in learning via EM-type algorithms.
- Solution: normalize the tight bounds: 'horseshoe-like' [Bhadra et al., 2017a].

$$
p_{\widetilde{H S}}(\omega \mid a)=\frac{1}{2 \pi a^{1 / 2}} \log \left(1+\frac{a}{\omega^{2}}\right) .
$$

- Extend this for precision matrix estimation (Sagar, Banerjee, D., \& Bhadra, 2021).

Normal Scale Mixture Representation!

- Frullani's identity [Jeffreys and Swirles, 1972, pp. 406-407]:

$$
\int_{0}^{\infty} \frac{f(a x)-f(b x)}{x} d x=\{f(0)-f(\infty)\} \log (b / a)
$$

- $f(x)=\exp (-x)$ yields a latent variable representation:

$$
\frac{1}{2 \pi a^{1 / 2}} \log \left(1+\frac{a}{\omega^{2}}\right)=\int_{0}^{\infty} \exp \left(-\frac{u \omega^{2}}{a}\right) \frac{\left(1-e^{-u}\right)}{2 \pi a^{1 / 2} u} d u
$$

- Normal scale mixture:

$$
(\omega \mid u, a) \stackrel{i n d}{\sim} \mathcal{N}\left(0, \frac{a}{2 u}\right), p(u)=\frac{1-e^{-u}}{2 \pi^{1 / 2} u^{3 / 2}}
$$

- Reparametrize $\left(t^{2}=2 u\right.$ and $\left.\tau^{2}=a\right)$:

$$
(\omega \mid i, \tau) \sim \mathcal{N}\left(0, \frac{\tau^{2}}{t^{2}}\right), p(t)=\frac{\left(1-e^{-\frac{1}{2} t^{2}}\right)}{\sqrt{2 \pi} t^{2}}
$$

- This $p(t)$ is the standard Slash-Normal density that can be written as a Normal variance mixture with a $\operatorname{Pareto}\left(\frac{1}{2}\right)$ mixing density.

Details

- For the fully Bayesian model, the element-wise prior specification induced by the horseshoe-like prior is,

$$
\omega_{i j} \mid a \sim \pi\left(\omega_{i j} \mid a\right), 1 \leq i<j \leq p ; \quad \omega_{i i} \propto 1,1 \leq i \leq p
$$

where $\pi\left(\omega_{i j} \mid a\right)$ is the density of the horseshoe-like prior.

- The horseshoe-like prior above can be expressed as a Gaussian scale-mixture [Bhadra et al., 2017a], thus giving us a global-local shrinkage prior:

$$
\begin{equation*}
\omega_{i j} \mid v_{i j}, a \sim \mathcal{N}\left(0, \frac{a}{2 v_{i j}}\right), \pi\left(v_{i j}\right) \sim \frac{1-\exp \left(-v_{i j}\right)}{2 \pi^{1 / 2} v_{i j}^{3 / 2}} \tag{3}
\end{equation*}
$$

- Only $v_{i j}$ is considered to be latent and the global scale parameter a is considered to be fixed.
- Can estimate a by the effective model size approach of Piironen et al. [2017] to avoid it collapsing to zero.

Details

- We restrict the prior on a subspace of symmetric positive definite matrices, $\mathcal{M}_{p}^{+}(L)$, where

$$
\begin{equation*}
\mathcal{M}_{p}^{+}(L)=\left\{\boldsymbol{\Omega} \in \mathcal{M}_{p}^{+}: 0<L^{-1} \leq \operatorname{eig}_{1}(\boldsymbol{\Omega}) \leq \cdots \leq \operatorname{eig}_{p}(\boldsymbol{\Omega}) \leq L<\infty\right\} \tag{4}
\end{equation*}
$$

- Only necessary for arriving at the theoretical results involving the posterior convergence rate of Ω. We assume that L is a fixed constant, which can be large.
- However, this condition does not affect the practical implementation of our proposed method, and is used purely as a technical requirement.
- Beyond this, no structural assumption (e.g., decomposability) is placed on either $\boldsymbol{\Omega}$ or $\boldsymbol{\Sigma}$.

Joint prior

- Combining the unrestricted prior as in (3) and (3), along with the prior space restriction as in (4), the joint prior distribution on $\boldsymbol{\Omega}$ is given by,

$$
\pi(\boldsymbol{\Omega} \mid v, a) \pi(v) \propto \prod_{i, j: i<j}\left(1-\exp \left(-v_{i j}\right)\right) v_{i j}^{-1} \exp \left(\frac{-v_{i j} \omega_{i j}^{2}}{a}\right) \mathbb{1}_{\mathcal{M}_{p}^{+}(L)}(
$$

- With the prior specification as in (5), the log-posterior \mathcal{L} thus becomes,
$\mathcal{L} \propto \frac{n}{2} \log |\boldsymbol{\Omega}|-\frac{n}{2} \operatorname{tr}(\mathbf{S} \boldsymbol{\Omega})+\sum_{i, j: i<j}\left\{\log \left(1-\exp \left(-v_{i j}\right)\right)-\log v_{i j}-\frac{v_{i j} \omega_{i j}^{2}}{a}\right\}$

Estimation

- Utilize the Gaussian mixture representation to devise an Expectation Conditional Maximization (ECM) [Meng and Rubin, 1993] approach to MAP estimation.
- For updating the elements of the precision matrix, we use the coordinate descent technique proposed by Wang [2014].
- E Step: Following Bhadra et al. [2017a], we calculate the conditional expectation of the latent variable $v_{i j}, 1 \leq i<j \leq p$, at current iteration (t) as follows:

$$
\begin{equation*}
\mathbb{E}\left(v_{i j} \mid \omega_{i j}^{(t)}, a\right)=\left\{\log \left(1+\frac{a}{\left(\omega_{i j}^{(t)}\right)^{2}}\right)\right\}^{-1} \frac{a^{2}}{\left(\left(\omega_{i j}^{(t)}\right)^{2}+a\right)\left(\left(\omega_{i j}^{(t)}\right)^{2}\right)} \tag{7}
\end{equation*}
$$

- CM Steps: Having updated the latent parameters in the E-Step, the coordinate descent approach of Wang [2014] is used to update one column of the precision matrix at a time.

Posterior sampling

- Posterior sampling strategy combines ideas from [Bhadra et al., 2017a] and [Li et al., 2017].
- With substitutions $2 v_{i j} \mapsto t_{i j}^{2}$ and $a \mapsto \tau^{2}$, the prior can be written as:
$\omega_{i j} \mid v_{i j}, \tau \sim \mathcal{N}\left(0, \tau^{2} / t_{i j}^{2}\right), \pi\left(t_{i j}\right)=\frac{1-\exp \left(-t_{i j}^{2} / 2\right)}{(2 \pi)^{1 / 2} t_{i j}^{2}}, t_{i j} \in \mathbb{R}, \tau^{2}>0$,
where $\pi\left(t_{i j}\right)$ above is known as the the slash normal density, expressed as $\left(\phi(0)-\phi\left(t_{i j}\right)\right) / t_{i j}^{2}$ [Bhadra et al., 2017a].
- Introducing a further local latent variable $r_{i j}$, the density for $t_{i j}$ can also be written as a normal scale mixture, where the scale follows a Pareto distribution, that is,

$$
t_{i j} \mid r_{i j} \sim \mathcal{N}\left(0, r_{i j}\right), r_{i j} \sim \text { Pareto }(1 / 2) .
$$

- Remaining steps are similar to the graphical horseshoe sampler of Li et al. [2017].

Posterior consistency

- Posterior contraction rate of the precision matrix $\boldsymbol{\Omega}$ around the true precision matrix Ω_{0} with respect to the Frobenius norm under the graphical horseshoe-like prior.
- We make certain assumptions on the true precision matrix, the dimension and sparsity, and the prior space.
- Assumptions: True underlying graph is sparse, effective dimension of the parameter $\Omega_{0}, p+s$ satisfies $(p+s) \log p / n=o(1)$, the prior space contains the true precision matrix, and the prior puts sufficient mass around the true zero elements in the precision matrix.

Theorem

The posterior distribution of Ω satisfies

$$
\mathbb{E}_{0}\left[P\left\{\left\|\boldsymbol{\Omega}-\mathbf{\Omega}_{0}\right\|_{2}>M \epsilon_{n} \mid \mathbf{X}^{(n)}\right\}\right] \rightarrow 0
$$

for $\epsilon_{n}=n^{-1 / 2}(p+s)^{1 / 2}(\log p)^{1 / 2}$ and a sufficiently large constant $M>0$.

MAP estimator

- We can prove that the extended real-valued penalty function $\operatorname{pen}_{a}(x)=-\log \log \left(1+a / x^{2}\right), a>0$, is strongly concave, and hence strictly concave, for all $x \in \operatorname{dom}\left(\right.$ pen $\left._{a}\right)$, separately for $x>0$ and $x<0$.
- Strict concavity of penalty function guarantees that the LLA algorithm will satisfy an ascent property, that is, $Q\left(\boldsymbol{\Omega}^{(t+1)}\right)>Q\left(\boldsymbol{\Omega}^{(t)}\right)$.

Theorem

Under the conditions of Theorem 1, the MAP estimator of $\boldsymbol{\Omega}$, given by $\hat{\mathbf{\Omega}}^{\mathrm{MAP}}$ is consistent, in the sense that

$$
\left\|\hat{\mathbf{\Omega}}^{\mathrm{MAP}}-\mathbf{\Omega}_{0}\right\|_{2}=O_{P}\left(\epsilon_{n}\right)
$$

where ϵ_{n} is the posterior convergence rate as defined in Theorem 1.

- Converges to the true precision matrix $\boldsymbol{\Omega}_{0}$ at the same rate as the posterior convergence rate in the Frobenius norm.

Simulation: selected

Hubs. The rows/columns are partitioned into K disjoint groups G_{1}, \ldots, G_{K}. The off-diagonal entries $\omega_{i j}^{0}$ are set to 0.25 if $i \neq j$ and $i, j \in G_{k}$ for $k=1, \ldots, K$. In our simulations we consider $p / 10$ groups with equal number of elements in each group.

Table 1: 50 data sets generated with precision matrix Ω_{0}, where $n=120$ and $p=100$. Candidates: frequentist graphical lasso with penalized diagonal elements (GL1) and with unpenalized diagonal elements (GL2), graphical SCAD (GSCAD), Bayesian graphical lasso (BGL), the graphical horseshoe (GHS), graphical horseshoe-like ECM (ECM) and graphical horseshoe-like MCMC (MCMC).

	Hubs90 nonzero pairs out of 4950 nonzero elements $=0.25$						
	GL1	GL2	GSCAD	BGL	GHS	ECM	MCMC
Stein's loss	5.255	6.328	5.213	43.042	5.101	4.22	5.310
	(0.263)	(0.414)	(0.261)	(0.802)	(0.455)	(0.369)	(0.485)
F norm	3.018	3.432	3.003	4.295	2.544	2.415	2.687
	(0.091)	(0.112)	(0.093)	(0.156)	(0.126)	(0.103)	(0.141)
TPR	. 995	. 986	. 998	. 995	. 872	0.985	0.754
	(.007)	(.017)	(.002)	(.008)	(.04)	(.014)	(0.004)
FPR	. 101	. 045	. 983	. 186	. 003	. 062	0.003
	(.016)	(.008)	(.012)	(.007)	(.001)	(0.005)	(0.001)
MCC	0.373	0.523	0.016	0.27	0.85	0.458	0.775
	(.027)	(.039)	(.006)	(.006)	(.027)	(.015)	(.033)
Avg CPU time	1.739	1.76	48.54	549.196	252.94	5.811	537.604

Summary and Scopes (Part I)

- Global-local priors: state-of-the-art Bayesian tool for sparse signal recovery.
- Can be extended to sparse + structured covariates: GIGG and graphical-horseshoe.
- Scale mixture: allows for MCMC + EM and LLA algorithms.
- Can be interpreted as non-convex penalty (horseshoe-like)
- Scopes:

1. Selection for bi-level sparsity (still Oracle?)
2. Multiple graphical models.
3. Extend beyond Gaussian set-up (e.g. [Datta and Dunson, 2016]).
4. An appealing new direction is Bayesian neural net, e.g. [Ghosh and Doshi-Velez, 2017] ['Model selection in Bayesian neural networks via horseshoe priors']

References

References (for this talk)

- Graphical horseshoe-like prior: Sagar, Ksheera, Banerjee, S., Datta, J., and Bhadra, A.. "Precision Matrix Estimation under the Horseshoe-like Prior-Penalty Dual." arXiv preprint arXiv:2104.10750 (2021).
- GIGG shrinkage: Boss, J., Datta, J., Wang, X., Park, S. K., Kang, J., \& Mukherjee, B. (2021). Group Inverse-Gamma Gamma Shrinkage for Sparse Regression with Block-Correlated Predictors. arXiv preprint arXiv:2102.10670.
- Horseshoe-like prior: Bhadra, A., Datta, J., Polson, N. G., \& Willard, B. (2019). Horseshoe regularization for feature subset selection. Sankhya B. [preprint]
- Graphical horseshoe: Li, Y., Craig, B. A., \& Bhadra, A. (2019). The graphical horseshoe estimator for inverse covariance matrices. Journal of Computational and Graphical Statistics, 28(3), 747-757.

References (General global-Local)

- Bhadra, A., Datta, J., Li, Y., Polson, N. G., \& Willard, B. (2019). Prediction risk for global-local shrinkage regression. 20 (78), 1-39, Journal of Machine Learning Research. arXiv:1605.04796.
- Bhadra, A., Datta, J., Polson, N. G., \& Willard, B. T. (2019). Lasso Meets Horseshoe: A Survey. 34(3), 405-427. Statistical Science.
- Bhadra, Datta, Li and Polson (2019). "Horseshoe Regularization for Machine Learning in Complex and Deep Models". Published, International Statistical Review. Discussed paper [preprint].
- Bhadra, Datta, Polson, and Willard (2019), (*alphabetical), "Global-local mixtures - A Unifying Framework". Accepted, Sankhya A.
- Bhadra, A., Datta, J., Polson, N. G., \& Willard, B. (2017). The horseshoe+ estimator of ultra-sparse signals. Bayesian Analysis, 12(4), 1105-1131.
- Datta, J., \& Dunson, D. B. (2016). Bayesian inference on quasi-sparse count data. Biometrika, 103(4), 971-983.
- Bhadra, A., Datta, J., Polson, N. G., \& Willard, B. (2016). Default Bayesian analysis with global-local shrinkage priors. Biometrika, 103(4), 955-969.
- Datta, J., \& Ghosh, J. K. (2013). Asymptotic properties of Bayes risk for the horseshoe prior. Bayesian Analysis, 8(1), 111-132.
- Li, Datta, Craig, and Bhadra, (2020+). "Joint Mean-Covariance Estimation via the Horseshoe with an Application in Genomic Data Analysis". submitted. [preprint].

Thank you!

Resources for Horseshoe Prior

Learning τ

1. Maximum marginal likelihood estimator (MMLE)
2. Full Bayes estimator: half-Cauchy prior truncated to the interval $[1 / n, 1]$.
3. Cross-validation.
4. By studying the prior for $m_{\text {eff }}=\sum_{i=1}^{n}\left(1-\kappa_{i}\right)$ [Piironen and Vehtari, 2016]

- MMLE beats simple thresholding:

$$
\hat{\tau}_{s}\left(c_{1}, c_{2}\right)=\max \left\{\frac{\sum_{i=1}^{n} \mathbf{1}\left\{\left|y_{i}\right| \geq \sqrt{\left.c_{1} \log (n)\right\}}\right.}{c_{2} n}, \frac{1}{n}\right\} .
$$

- Empirical Bayes estimate of τ can replace a full Bayes estimate of τ.
- Caution to prevent the estimator from getting too close to zero.

Computation for Horseshoe

1. MCMC : block-updating $\boldsymbol{\theta}, \boldsymbol{\lambda}$ and τ using either a Gibbs or parameter expansion or slice sampling strategy.
2. Makalic and Schmidt [2016]: Inverse-gamma scale mixture for Gibbs sampling scheme for horseshoe and horseshoe+ prior for linear regression and logistic and negative binomial regression.
3. Hahn et al. [2016]: Elliptical slice sampler - wins over Gibbs strategies!
4. Bhattacharya et al. [2016]: Gaussian sampling alternative to the naïve Cholesky decomposition to reduce the computational burden from $O\left(p^{3}\right)$ to $O\left(n^{2} p\right)$.

Implementation

Table 2: Implementations of Horseshoe and Other Shrinkage Priors

Implementation (Package/URL)	Authors
R package: monomvn	Gramacy and Pantaleo [2010]
R code in paper	Scott [2010]
R package: horseshoe	van der Pas et al. [2016]
R package: fastHorseshoe	Hahn et al. [2016]
MATLAB code	Bhattacharya et al. [2016]
GPU accelerated Gibbs sampling	Terenin et al. [2016]
bayesreg + MATLAB code in paper	Makalic and Schmidt [2016]
MATLAB code	Johndrow and Orenstein [2017]

